IJP 02126

Ionization constants of an amino acid as a function of temperature

William H. Streng and David L Steward, Jr

Merrell Dow Research Institute, Marion Merrell Dow Pharmaceutical Inc., Cincinnati, OH 45215 (U.S.A.)

(Received 6 February 1990)

(Accepted 6 March 1990)

The ionization constants of compound I (MDL 71754, 4-amino-5-hexenoic acid) have been determined over the temperature range 25-60 °C using a potentiometric titration procedure. The procedure was the same as that used previously (Streng et al., 1976) with the following modifications: Combination electrode (Radiometry GK2402B), pH meter (Radiometry PHM85), water bath to control the temperature of the solution (RMS-20 Lauda circulating constant temperature bath; $\pm 0.01^{\circ}$ C). Knowing the ionization constants as a function of temperature, the values for the thermodynamic properties ΔH and ΔS were determined.

Compound I

Potentiometric titrations were run in triplicate on Compound I at 30, 45, 50 and 60 °C. Solutions were prepared by dissolving approx. 30 mg of MDL 71754 in 50 ml of deionized water. To these solutions, an excess (approx. 6 ml) of standardized HCl (~ 0.05 M) was added to doubly protonate the compound. These solutions were placed in the water bath and titrated with standardized NaOH $(\sim 0.05 \text{ M})$ solution. The solution pH values were measured as a function of the amount of NaOH added. The solutions were stirred by bubbling nitrogen saturated with water into the beaker.

The titration data were input into a computer program which determines the equilibrium constants of diprotic compounds *. The average values of these calculations are listed in Table 1 where the standard deviations of the listed K_a values are between 1 and 5%. These data were treated according to the van't Hoff equation (Eqn 1) to determine ΔH . Knowing ΔH , ΔS could then be calculated (Eqn 2):

$$\frac{\mathrm{d}\ln(K)}{\mathrm{d}(1/T)} = -\frac{\Delta H}{R} \tag{1}$$

where K is the equilibrium constant, T is the temperature (in K), ΔH is the enthalpy and R is

TABLE	1	

Average K val	ues
---------------	-----

T(°C)	$K_1 (\times 10^5)$	$K_2 (\times 10^{10})$	
25	9.600±0.159	1.833 ± 0.076	_
30	9.113 ± 0.361	2.399 ± 0.035	
45	9.618 ± 0.387	5.920 ± 0.325	
50	9.221 ± 0.394	7.503 ± 0.155	
60	9.051 ± 0.342	12.02 ± 0.058	

Correspondence: W.H. Streng, Merrell Dow Research Institute, Marion Merrell Dow Pharmaceutical Inc., 2110 E. Galbraith Rd Cincinnati, OH 45215-6300, U.S.A.

^a The program includes corrections for activity coefficients using Davies approximation. A copy of the program is avialable on request from the author.

Fig. 1. Van't Hoff plot.

the gas law constant (8.315 J degree⁻¹ mol⁻¹; 1.987 cal degree⁻¹ mol⁻¹).

$$\Delta S = \frac{RT \ln(K) + \Delta H}{T}$$
(2)

where ΔS is the entropy.

From the van't Hoff equation, the slope of the line of a graph of pK vs 1/T will equal $\Delta H/2.303R$. In Table 2 the measured, predicted and difference in the pK_a values are given. There is good correlation between the calculated and measured values. Comparison with pK_a values for similar compounds indicates that these trends would be expected (Kortum et al., 1961; Perrin, 1965, 1972). Fig. 1 is a plot of these data and the calculated curves. Based on the literature values, pK_1 can be assigned to the carboxylic acid group and pK_2 to the amino group. It can be seen that there is little change in pK_1 over this temperature range (becoming a slightly weaker acid) while pK_2 changes by a factor of five (becoming a weaker base). The slope of these lines will equal ΔH and ΔS can be determined using Eqn 2. The results of these calculations are given in Table 3. These

TABLE 2

Predicted pK_a values

p <i>K</i> ₁		$\Delta p K_1$	pK ₂		$\Delta \mathbf{p} K_2$
Pred.	Meas.		Pred.	Meas.	
4.018	4.018	0.000	9.739	9.737	0.002
4.022	4.040	-0.018	9.609	9.620	-0.011
4.032	4.017	0.015	9.243	9.228	0.015
4.036	4.035	0.001	9.129	9.125	0.004
4.042	4.043	-0.001	8.910	8.920	-0.010
	$ \begin{array}{r} pK_1 \\ \hline Pred. \\ 4.018 \\ 4.022 \\ 4.032 \\ 4.036 \\ 4.042 \\ \end{array} $	$\begin{array}{c c} pK_1 \\ \hline Pred. & Meas. \\ \hline 4.018 & 4.018 \\ 4.022 & 4.040 \\ 4.032 & 4.017 \\ 4.036 & 4.035 \\ 4.042 & 4.043 \\ \hline \end{array}$	$\begin{array}{c c} pK_1 & \Delta pK_1 \\ \hline Pred. & Meas. \\ \hline \hline 4.018 & 4.018 & 0.000 \\ 4.022 & 4.040 & -0.018 \\ 4.032 & 4.017 & 0.015 \\ 4.036 & 4.035 & 0.001 \\ 4.042 & 4.043 & -0.001 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\Delta pK = predicted - measured.$

TABLE 3

 ΔH and ΔS values ^a

K	ΔH	ΔS		ΔS	
1	-1.34	- 81.2			
2	45.2	- 34.7			

^a ΔH , kJ/mol; ΔS , J degree⁻¹ mol⁻¹.

values are consistent with those found in the literature where ΔH values are in the range 1.7 to -0.8 kJ/mol for p K_1 and between 46 and 54 kJ/mol for p K_2 and ΔS values are in the range -67 to -88 J degree⁻¹ mol⁻¹ for p K_1 and -17 to -38 J degree⁻¹ mol⁻¹ for p K_2 (Martell and Smith, 1974, 1982).

References

- Kortum, G., Vogel, W. and Andrussow, K., Pure Applied Chemistry, Vol. 1, Dissociation Constants of Organic Acids in Aqueous Solution, 1961, pp. 190-536.
- Martell, A.E. and Smith, R.M., In Critical Stability Constants, Vol. 1: Amino Acids, Plenum, New York, 1974.
- Martell, A.E. and Smith, R.M., In Critical Stability Constants, Vol. 5, First Suppl., Plenum, New York, 1982.
- Perrin, D.D., International Union of Pure and Applied Chemistry, Chemical Data Series, No. 12, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965.
- Perrin, D.D., International Union of Pure and Applied Chemistry, Dissociation Constants of Organic Bases in Aqueous Solution: Suppl. 1972, Butterworths, London, 1972.
- Streng, W.H., Huber, H.E., DeYoung, J.L. and Zoglio, M.A., Ionization constants of cephalosporin zwitterionic compounds. J. Pharm. Sci., 65 (1976) 1034–1038.